Skip to main content

An Alternating Emf Of Peak To Peak Value Of 40 V Is Applied Across The Series Combination Of An Inductor Of Inductance 100mh Capacitor Of Capacitance 1uf And Resistance 100 Ohm . Determine The Bandwidth And Quality Factor.

Q) An Alternating Emf Of Peak To Peak Value Of 40 V Is Applied Across The Series Combination Of An Inductor Of Inductance 100mh Capacitor Of Capacitance 1uf And Resistance 100 Ohm. Determine The Bandwidth And Quality Factor.

Ans) METHOD 1:-

An Alternating Emf Of Peak To Peak Value Of 40 V Is Applied Across The Series Combination Of An Inductor Of Inductance 100mh Capacitor Of Capacitance 1uf And Resistance 100 Ohm . Determine The Bandwidth And Quality Factor

An Alternating Emf Of Peak To Peak Value Of 40 V Is Applied Across The Series Combination Of An Inductor Of Inductance 100mh Capacitor Of Capacitance 1uf And Resistance 100 Ohm . Determine The Bandwidth And Quality Factor


METHOD 2)

1. Calculate Impedance:


First, we need to determine the total impedance (Z) of the circuit at a specific frequency. Each component contributes to the impedance:

  • Inductive reactance (X_L) = 2πfL, where f is the frequency.
  • Capacitive reactance (X_C) = 1/(2πfC).
  • Total impedance (Z) = √(R^2 + (X_L - X_C)^2).

2. Find Resonant Frequency:

At the resonant frequency (f_r), X_L and X_C cancel each other out, leaving only the resistance in the circuit. This results in minimum impedance and maximum current flow. The resonant frequency can be calculated by:

  • f_r = 1/(2π√(LC)).

3. Calculate Bandwidth:

The bandwidth (B) represents the range of frequencies around the resonant frequency where the impedance remains close to its minimum value. We can estimate the bandwidth using:

  • B = f_r / Q, where Q is the quality factor.

4. Compute Quality Factor:

The quality factor (Q) indicates the "sharpness" of the resonance peak. Higher Q implies a narrow peak and less energy dissipation. Q can be calculated by:

  • Q = ω_rR/L, where ω_r is the angular resonant frequency (2πf_r).

5. Apply Values:

Plugging in the given values:

  • L = 100 mH = 0.1 H
  • C = 1 μF = 10^-6 F
  • R = 100 Ω

Result:

  1. Resonant Frequency:

    • f_r = 1/(2π√(0.1 * 10^-6)) ≈ 159.15 Hz
  2. Bandwidth:

    • B = f_r / Q (requires Q calculation)
  3. Quality Factor:

    • ω_r = 2πf_r ≈ 1000 rad/s
    • Q = ω_rR/L = 1000 * 100 / 0.1 ≈ 100000
  4. Bandwidth:

    • B = 159.15 Hz / 100000 ≈ 0.00159 Hz

Therefore, the bandwidth of the circuit is approximately 0.00159 Hz, indicating a very narrow resonance peak due to the high quality factor of 100000.

Remember:

  • These calculations are estimates and depend on the actual frequency dependence of the components.
  • The peak-to-peak voltage of 40 V is not used in the calculations directly but provides information about the applied voltage source.

I hope this helps! Let me know if you have any further questions.

Comments

Popular posts from this blog

किन्हीं दो विषयों पर टिप्पणी लिखिए:- १. टिप्पण की विशेषताएं २. प्रतिवेदन का महत्व ३. सामान्य हिंदी और कार्यालयी हिंदी ४. व्यावसायिक पत्र के प्रकार | Kinhi Do Vishayon Par Tippan Likhiye

किन्हीं दो विषयों पर टिप्पणी लिखिए:- १. टिप्पण की विशेषताएं  २. प्रतिवेदन का महत्व ३. सामान्य हिंदी और कार्यालयी हिंदी  ४. व्यावसायिक पत्र के प्रकार Kinhi Do Vishayon Par Tippan Likhiye | Hindi Bhasha 'Kha'  तिप्पणी की विशेषताएँ और सुझाव: एक अच्छी टिप्पणी हमेशा सार्थक और संरचित होती है जो पाठकों को समझने में मदद करती है और सही दिशा में मार्गदर्शन करती है। यदि आप एक टिप्पणी लिख रहे हैं, तो इसे ध्यानपूर्वक सोचें और निम्नलिखित विशेषताओं का ध्यान रखें: सटीकता और संवेदनशीलता: आपकी टिप्पणी सटीक और संवेदनशील होनी चाहिए। जिससे पाठक आपकी बातों को सही से समझ सकें। संक्षेप में स्पष्टता: अधिक शब्दों की जगह, संक्षेप में स्पष्ट भाषा का उपयोग करें। सकारात्मक और सहायक: टिप्पणी सकारात्मक होनी चाहिए और पाठकों को कुछ सीखने के लिए प्रेरित करनी चाहिए। विवेचना करें: आपकी टिप्पणी में यदि विवेचना है, तो इसे और बढ़ावा देने के लिए समर्थन दीजिए। सही त्रुटियों को सुधारें: अगर आपने टिप्पणी में किसी त्रुटि को पहचाना है, तो उसे सही करें ताकि पाठकों को सही जानकारी मिले। इन सुझावों...

A Bug Crawls Towards The Rim With A Constant Speed Vo Along The Spoke Of A Wheel That Is Rotating With Constant Angular Velocity W About A Vertical Axis. Find All Apparent Forces Acting On The Bug. And How Far The Bug Can Crawl Before It Starts To Slip, Given That Coefficient Of Static Friction Between The Bug And The Spoke Is Us.

Q) A Bug Crawls Towards The Rim With A Constant Speed Vo Along The Spoke Of A Wheel That Is Rotating With Constant Angular Velocity W About A Vertical Axis. Find All Apparent Forces Acting On The Bug. And How Far The Bug Can Crawl Before It Starts To Slip, Given That Coefficient Of Static Friction Between The Bug And The Spoke Is Us. Ans)  Apparent Forces Acting on the Bug: There are three apparent forces acting on the bug: Centrifugal Force (Fc) :   This outward force arises due to the bug's circular motion along the rotating wheel. Magnitude: Fc = mv^2/r, where m is the bug's mass, v is its instantaneous velocity relative to the rim (sum of crawling speed and tangential velocity due to wheel rotation), and r is the distance from the bug to the wheel's axis. Direction: Radially outward, away from the wheel's axis. Normal Force (Fn):   This is the force exerted by the spoke on the bug perpendicular to its motion. Magnitude: Fn = N, where N is the reaction force due to t...

A Damped Harmonic Oscillator Has The Amplitude Of 20cm. It Reduces To 2cm After 100 Oscillations Each Of The Time Period 4.6s. Calculate Its Logarithmic Damping Constant. Compute The Number Of Oscillations In Which The Amplitude Drops By 50%

Q) A Damped Harmonic Oscillator Has The Amplitude Of 20cm. It Reduces To 2cm After 100 Oscillations Each Of The Time Period 4.6s. Calculate Its Logarithmic Damping Constant. Compute The Number Of Oscillations In Which The Amplitude Drops By 50%. Damped Harmonic Oscillator Calculations Here's how we can calculate the logarithmic damping constant and the number of oscillations for a 50% drop in amplitude for the given damped harmonic oscillator: 1. Logarithmic Damping Constant: The logarithmic damping constant (δ) represents the rate of decay of the amplitude per oscillation. We can calculate it using the formula: δ = (1 / N) * ln(A₀ / A_f) where: N is the number of oscillations (100 in this case) A₀ is the initial amplitude (20 cm) A_f is the final amplitude after N oscillations (2 cm) Plugging in the values, we get: δ = (1 / 100) * ln(20 / 2) ≈ 0.02303 Therefore, the logarithmic damping constant is approximately 0.02303. 2. Number of Oscillations for 50% Drop: We want to find the n...