Skip to main content

The Equation Of A Damped Harmonic Oscillation Is Given By 8(d2y/dt2) +24(dx/dt) + 48y =0. Find The Frequency Of The Damped Oscillations.

The Equation Of A Damped Harmonic Oscillation Is Given By :-

 8(d2y/dt2) +24(dx/dt) + 48y =0. 

Find The Frequency Of The Damped Oscillations 


Ans) Method 1:-


The Equation Of A Damped Harmonic Oscillation Is Given By 8(d2y/dt2) +24(dx/dt) + 48y =0. Find The Frequency Of The Damped Oscillations.

Here's how to find the frequency of the damped oscillations from the given equation:


1. Identify the coefficients:


The coefficient of the second derivative term (8) represents the mass (m).

The coefficient of the first derivative term (24) represents the damping coefficient (b).

The coefficient of the position term (48) represents the spring constant (k).


2. Calculate the natural frequency:


The natural frequency (ω_0), which is the frequency of the system without damping, is given by:

ω_0 = √(k/m) = √(48/8) = √6 ≈ 2.45 rad/s.


3. Calculate the damping ratio:

The damping ratio (ζ), which characterizes the degree of damping, is given by:

ζ = b/(2√(mk)) = 24/(2√(8*48)) = 1/√2 ≈ 0.707

4. Determine the actual frequency of the damped oscillations:


Since the damping ratio is less than 1 (ζ < 1), the system is underdamped, meaning it will oscillate with a decreasing amplitude.

The frequency of the damped oscillations (ω_d) is given by:

ω_d = ω_0 √(1 - ζ^2) ≈ 2.45 √(1 - 0.707^2) ≈ 1.73 rad/s

Therefore, the frequency of the damped oscillations is approximately 1.73 rad/s.


Method 2 :-

The Equation Of A Damped Harmonic Oscillation Is Given By 8(d2ydt2) +24(dxdt) + 48y =0. Find The Frequency Of The Damped Oscillations.
The Equation Of A Damped Harmonic Oscillation Is Given By 8(d2y/dt2) +24(dx/dt) + 48y =
0. Find The Frequency Of The Damped Oscillations.
The Equation Of A Damped Harmonic Oscillation Is Given By 8(d2ydt2) +24(dxdt) + 48y =0. Find The Frequency Of The Damped Oscillations.
The Equation Of A Damped Harmonic Oscillation Is Given By 8(d2y/dt2) +24(dx/dt) + 48y =0. Find The Frequency Of The Damped Oscillations.




Comments

Popular posts from this blog

किन्हीं दो विषयों पर टिप्पणी लिखिए:- १. टिप्पण की विशेषताएं २. प्रतिवेदन का महत्व ३. सामान्य हिंदी और कार्यालयी हिंदी ४. व्यावसायिक पत्र के प्रकार | Kinhi Do Vishayon Par Tippan Likhiye

किन्हीं दो विषयों पर टिप्पणी लिखिए:- १. टिप्पण की विशेषताएं  २. प्रतिवेदन का महत्व ३. सामान्य हिंदी और कार्यालयी हिंदी  ४. व्यावसायिक पत्र के प्रकार Kinhi Do Vishayon Par Tippan Likhiye | Hindi Bhasha 'Kha'  तिप्पणी की विशेषताएँ और सुझाव: एक अच्छी टिप्पणी हमेशा सार्थक और संरचित होती है जो पाठकों को समझने में मदद करती है और सही दिशा में मार्गदर्शन करती है। यदि आप एक टिप्पणी लिख रहे हैं, तो इसे ध्यानपूर्वक सोचें और निम्नलिखित विशेषताओं का ध्यान रखें: सटीकता और संवेदनशीलता: आपकी टिप्पणी सटीक और संवेदनशील होनी चाहिए। जिससे पाठक आपकी बातों को सही से समझ सकें। संक्षेप में स्पष्टता: अधिक शब्दों की जगह, संक्षेप में स्पष्ट भाषा का उपयोग करें। सकारात्मक और सहायक: टिप्पणी सकारात्मक होनी चाहिए और पाठकों को कुछ सीखने के लिए प्रेरित करनी चाहिए। विवेचना करें: आपकी टिप्पणी में यदि विवेचना है, तो इसे और बढ़ावा देने के लिए समर्थन दीजिए। सही त्रुटियों को सुधारें: अगर आपने टिप्पणी में किसी त्रुटि को पहचाना है, तो उसे सही करें ताकि पाठकों को सही जानकारी मिले। इन सुझावों...

A Bug Crawls Towards The Rim With A Constant Speed Vo Along The Spoke Of A Wheel That Is Rotating With Constant Angular Velocity W About A Vertical Axis. Find All Apparent Forces Acting On The Bug. And How Far The Bug Can Crawl Before It Starts To Slip, Given That Coefficient Of Static Friction Between The Bug And The Spoke Is Us.

Q) A Bug Crawls Towards The Rim With A Constant Speed Vo Along The Spoke Of A Wheel That Is Rotating With Constant Angular Velocity W About A Vertical Axis. Find All Apparent Forces Acting On The Bug. And How Far The Bug Can Crawl Before It Starts To Slip, Given That Coefficient Of Static Friction Between The Bug And The Spoke Is Us. Ans)  Apparent Forces Acting on the Bug: There are three apparent forces acting on the bug: Centrifugal Force (Fc) :   This outward force arises due to the bug's circular motion along the rotating wheel. Magnitude: Fc = mv^2/r, where m is the bug's mass, v is its instantaneous velocity relative to the rim (sum of crawling speed and tangential velocity due to wheel rotation), and r is the distance from the bug to the wheel's axis. Direction: Radially outward, away from the wheel's axis. Normal Force (Fn):   This is the force exerted by the spoke on the bug perpendicular to its motion. Magnitude: Fn = N, where N is the reaction force due to t...

A Damped Harmonic Oscillator Has The Amplitude Of 20cm. It Reduces To 2cm After 100 Oscillations Each Of The Time Period 4.6s. Calculate Its Logarithmic Damping Constant. Compute The Number Of Oscillations In Which The Amplitude Drops By 50%

Q) A Damped Harmonic Oscillator Has The Amplitude Of 20cm. It Reduces To 2cm After 100 Oscillations Each Of The Time Period 4.6s. Calculate Its Logarithmic Damping Constant. Compute The Number Of Oscillations In Which The Amplitude Drops By 50%. Damped Harmonic Oscillator Calculations Here's how we can calculate the logarithmic damping constant and the number of oscillations for a 50% drop in amplitude for the given damped harmonic oscillator: 1. Logarithmic Damping Constant: The logarithmic damping constant (δ) represents the rate of decay of the amplitude per oscillation. We can calculate it using the formula: δ = (1 / N) * ln(A₀ / A_f) where: N is the number of oscillations (100 in this case) A₀ is the initial amplitude (20 cm) A_f is the final amplitude after N oscillations (2 cm) Plugging in the values, we get: δ = (1 / 100) * ln(20 / 2) ≈ 0.02303 Therefore, the logarithmic damping constant is approximately 0.02303. 2. Number of Oscillations for 50% Drop: We want to find the n...