suppose L:R3to R3 is a linear operator and L[1,0,0]=[]-2,1,0 L=[0,1,0]=[-3,-2,1] L[0,0,1]=[0,-1,3] find L[-3,2,4]. give a formula for L[x,y,z] for all [x,y,z] belongs to R3 find basis
Q) Suppose L:R3to R3 is a linear operator and L[1,0,0]=[-2,1,0], L=[0,1,0]=[-3,-2,1], L[0,0,1]=[0,-1,3] find basis Find L[-3,2,4]. give a formula for L[x,y,z] for all [x,y,z] belongs to R3 Given that L L L is a linear operator and L [ 1 , 0 , 0 ] = [ − 2 , 1 , 0 ] L[1, 0, 0] = [-2, 1, 0] L[1,0,0]=[−2,1,0], L [ 0 , 1 , 0 ] = [ − 3 , − 2 , 1 ] L[0, 1, 0] = [-3, -2, 1] L[0,1,0]=[−3,−2,1], and L [ 0 , 0 , 1 ] = [ 0 , − 1 , 3 ] L[0, 0, 1] = [0, -1, 3] L[0,0,1]=[0,−1,3], we can write: [ − 3 , 2 , 4 ] = − 3 [ 1 , 0 , 0 ] + 2 [ 0 , 1 , 0 ] + 4 [ 0 , 0 , 1 ] = − 3 L [ 1 , 0 , 0 ] + 2 L [ 0 , 1 , 0 ] + 4 L [ 0 , 0 , 1 ] \begin{align*} [-3, 2, 4] &= -3[1, 0, 0] + 2[0, 1, 0] + 4[0, 0, 1] \\ &= -3L[1, 0, 0] + 2L[0, 1, 0] + 4L[0, 0, 1] \end{align*} [−3,2,4]=−3[1,0,0]+2[0,1,0]+4[0,0,1]=−3L[1,0,0]+2L[0,1,0]+4L[0,0,1] Using the given values for L [ 1 , 0 , 0 ] L[1, 0, 0] L[1,0,0], L [ 0 , 1 , 0 ] L[0, 1, 0] L[0,1,0], and L [ 0 , 0 , 1 ] L[0, 0, 1] L[0,0,1], we can compute: − 3 L [ 1 , 0 ...